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ABSTRACT
Current iterative methods for solving linear equations as-
sume reliability of data (no “bit flips”) and arithmetic (cor-
rect up to rounding error). If faults occur, the solver usu-
ally either aborts, or computes the wrong answer without
indication. System reliability guarantees consume energy or
reduces performance. As processor counts continue to grow,
these costs will become unbearable. Instead, we show that
if the system lets applications apply reliability selectively,
we can develop iterations that compute the right answer de-
spite faults. These “fault-tolerant” methods either converge
eventually, at a rate that degrades gracefully with increased
fault rate, or return a clear failure indication in the rare case
that they cannot converge. If faults are infrequent, these al-
gorithms spend most of their time in unreliable mode. This
can save energy, improve performance, and avoid restarting
from checkpoints. We illustrate convergence for a sample
algorithm, Fault-Tolerant GMRES, for representative test
problems and fault rates.

Keywords
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1. INTRODUCTION
Computational scientists tend to think of computer systems
as reliable digital devices. We can view them as such be-
cause system designers can translate voltage levels consis-
tently, hardware state is stable and any faults that do occur
are infrequent enough to be handled by hardware error de-
tection and correction. Presently, many system designers
predict that reliability will decline on future systems, es-
pecially for very high end computers that are composed of
millions of components [20, 16], and there are many efforts
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in the hardware development community to address these is-
sues, for example [9, 34]. Some studies already indicate that
faults are appearing at the user level [13]. However, without
error handling in the user code, these faults are not always
noticed, even though they may lead to incorrect results.

Most existing approaches to fault-tolerant algorithm devel-
opment assume that a fault can occur at any time during
program execution. In this paper we explore the use of
variable reliability to develop algorithms that perform most
computations using a less reliable computing mode, but per-
form some computations in a special, more highly-reliable
environment, presumably software-enabled. Using this ap-
proach, we show that with modest modifications, common
iterative methods can exhibit reliable behavior even if faults
occur during the computation. Furthermore, we believe this
basic approach can be applied to many classes of algorithms
such that, by performing a small fraction of an algorithm’s
computations in highly-reliable mode, we can continue to
make progress in our computations in the presence of some
system unreliability.

2. FAULT CHARACTERIZATION
In this paper, we use fault to mean an abnormal operating
condition of the computer system, which affects a running
routine (in this case a linear solver) in some way. The rou-
tine fails only when one or more faults causes it to compute
the wrong answer. That is, faults occur inside a routine; fail-
ure refers to the routine’s output, which does not meet the
caller’s success criteria. This distinction between faults and
failures is a simplified version of the multilevel model of soft-
ware reliability presented in [21]. This definition nests: for
example, if a nonlinear solver calls a linear solver repeatedly,
the linear solver may produce a solution with residual norm
greater than the caller’s tolerance (i.e., “fail”) on occasion,
but the nonlinear solver may still converge. Thus, failure
from the linear solver’s perspective may be a fault but not
a failure from the nonlinear solver’s perspective. The rest
of this paper considers faults and failures from the linear
solver’s perspective. We leave studies of algorithms that
consume linear solvers’ output (such as nonlinear solvers,
optimization algorithms, and implicit methods for solving
time-dependent systems of ordinary differential equations)
for future work.

In this paper, we give two classifications of faults. The first
is hard vs. soft :



• Hard faults: Cause program interruption and are
outside the scope of what the executable program can
directly detect. These faults can result from hardware
failure or from data integrity faults that lead to an
incorrect execution path.

• Soft faults: Do not cause immediate program inter-
ruption and are detectable via introspection by user
code. Soft faults occur as “bit flips” such as incorrect
floating point or integer data, or perhaps incorrect ad-
dress values that still point to valid user data space.
Although it is difficult to detect all soft faults, some
modest amount of introspection can be very effective
at dramatically reducing their impact.

An example of a hard fault would be the operating sys-
tem crashing, causing the program to stop executing. (This
would not be a failure if the system then restarts the pro-
gram from a checkpoint, and the program completes and
produces the correct answer.) In our experience, detecting
and recovering from hard faults requires a concerted effort
from all levels of the hardware and software stack. Although
there may be algorithmic research required for this effort,
the primary need is to determine roles, responsibilities and
protocols for communicating between layers. This activity is
underway in some layers, but is only starting to be addressed
in a comprehensive way.

Figure 1: Classification of faults. Hard faults are
outside the scope of our effort. We address soft
faults in several ways.

The second characterization applies only to soft faults, and
describes their temporal behavior:

• Persistent fault: The incorrect bit pattern will not
change as execution proceeds. Example: The primary
source of a data value (and any subsequent copies) are
incorrect, so there is no ability to restore correct state.

• Sticky fault: The incorrect bit pattern can be cor-
rected by direct action. Example: A backup source
for the data exists and can be used to restore correct
state.

• Transient fault: The incorrect pattern occurs tem-
porarily. Example: Data in a cache is incorrect, but
the correct value is still present in main memory and
the cache value is flushed.

Figure 1 illustrates the relationship between the two char-
acterizations of faults.

2.1 Potential for Soft Fault Detection and Cor-
rection

Although recovering from hard faults requires a coordinated
effort across software and hardware layers, at least some
soft faults can be effectively detected and corrected by user
code. Furthermore, practically speaking, some applications
spend much of their computation time in a small portion of
the total program lines of code. Such applications can ben-
efit from introducing fault-oriented introspection into that
portion of the software. This situation occurs frequently in
applications that generate and solve large linear systems of
equations. In many cases, 80% or more of the computation
time is spent in the linear solver. As problem sizes and pro-
cessor counts increase, the solver can take more than 99%
of the total execution time [18]. If we can incorporate intro-
spection into the solvers for these cases, we can dramatically
reduce the impact of soft faults.

One of the challenges for future system designers is deter-
mining how much fault resilience should be designed into
the system. Historically, designers have been very aggres-
sive in capturing faults, so much so that users rarely expe-
rience a fault during normal system use. In the future, such
approaches may be too expensive, resulting in a default reli-
ability that must always be scrutinized. With this in mind,
we introduce the concept of high vs. bulk reliability:

• Bulk reliability: The default reliability exhibited by
system in normal execution mode. As system feature
sizes shrink and component counts increase, we expect
that bulk reliability will decrease to the point where
users will need to pay attention to potential errors.

• High reliability: A special, presumably software-
enabled mode, such that the user can declare data
storage regions, data paths and execution regions that
have better than bulk reliability.

Presently most algorithms lack robustness in the presence
of soft faults. A single soft fault will not be detected and
will eventually result in catastrophic failure. Assuming we
have high reliability mechanisms in future programming en-
vironments, we have new opportunities for redesigning al-
gorithms. Specifically, we seek algorithm designs such that
decay in progress is proportional to the number of soft faults,
at least in practice.

In this paper we focus on preconditioned iterative methods,
and particularly on variants of GMRES (the Generalized
Minimal Residual method [25]). We do so because, as we
mentioned, many applications spend the vast majority of
execution time in the solver, and GMRES is one of the most
robust and popular methods for challenging problems. How-
ever, the approach we use is applicable to many algorithms.
In fact, we believe that most, and maybe all, algorithms can
eventually have fault-resilient formulations that introduce a
very small runtime overhead while practically achieving the
convergence equivalent to doing all computations in high re-
liability mode.



3. RELATED WORK
Fault-tolerant algorithms have long been a topic of research.
In numerical linear algebra, most fall within the category
of algorithm-based fault tolerance (ABFT) (see e.g., [15]).
Such approaches are interesting research, but often do not
fully address the needs of applications. In particular, ABFT
methods attempt to detect faults during the execution of
some function such as a solver, and then recover solver state
via metadata collected during execution or basic mathemat-
ical properties known about the algorithm. However, such
approaches are impractical since solver state is only one por-
tion of the total application state. If application state is not
also recovered, the solver state is irrelevant. Furthermore,
solver state is easily regenerated if application state is re-
covered. As a result, ABFT methods are not presently used
in applications as far as we know. ABFT methods can be-
come relevant if we can finally have in place the vertically
integrated resilience capabilities mentioned in the context of
hard fault situations. In this situation, faults detected and
resolved in the solver can remain relevant if the application
has also managed to recover its corresponding state.

Other authors have empirically investigated the behavior of
iterative solvers when soft faults occur (e.g., [5, 14]), or even
developed more energy-conserving hardware cache error cor-
rection schemes, based on observations of iterative methods’
cache use [19]. “Asynchronous” or “chaotic” iterations (see
e.g., [3] for a bibliography) are linear solvers designed to
tolerate message delays when applying the matrix in par-
allel, for certain classes of matrices. However, as far as we
know, no one has yet developed iterative solver algorithms
specifically to handle soft faults in computations and data.

4. MODELS OF RELIABILITY
In this section, we describe models of reliability that fault-
tolerant numerical algorithms could use. The main goal of
these models is to help us algorithm developers reason about
the quality of the computed solution. Without the promise
of reliability for selected data and computations, no algo-
rithm can promise anything about the final result. Thus, all
the models we propose in this section allow programmers to
demand reliability as needed, and to allow data and control
to flow between reliable and unreliable parts of the program.

A second goal of our reliability models is to convert hard
faults into soft faults whenever our algorithms can handle
the latter effectively. Reliability models govern the distinc-
tion between hard and soft faults. For example, the fail-stop
model ensures that either the data and computations are re-
liable, or the program terminates with minimal side effects;
it tries to turn all soft faults into hard faults. Current nu-
merical algorithms assume a fail-stop model, which we assert
can be relaxed in many cases. As long as algorithms can deal
with soft faults without a large time-to-solution penalty, re-
ducing the number of hard faults will improve performance
by avoiding restarts and allowing reduction of the checkpoint
frequency. It may even improve reliability, for example by
avoiding the catastrophic situation of a second hard fault
during recovery from one hard fault.

We begin in Section 4.1 by asking whether statistics could
help us avoid considering models of reliability, and showing
that it does not. Section 4.2 describes the “sandbox” model,

which is the most general reliability model our fault-tolerant
algorithms can use. The algorithm presented in Section 6
can work even in this model, but finer-grained models will
allow us to define its convergence behavior more precisely.
Therefore, we conclude with some desired features of finer-
grained models in Section 4.3.

4.1 Statistical “model”
Increasingly numerical simulations use statistical techniques
to account for uncertainty in the data as well as in the math-
ematical model. Many people refer to the study of represent-
ing and quantifying such uncertainties as uncertainty quan-
tification (UQ). It seems reasonable that we also could ap-
ply these techniques to account for possibly unreliable solves,
that is, “roll up” the solver’s uncertainty in that of the appli-
cation itself. This would not require new solver algorithms
or implementations. Instead, the problem would be solved
multiple times using existing solvers, and statistics would be
used to remove “outliers” and identify the most “believable”
solution. This would comprise a “model” of reliability based
on statistical belief, rather than on any guarantees made by
the system or solver.

This “model” is no model of reliability at all. It implicitly
assumes that faults may only occur in the solver, and that
the statistical analysis that identifies the most believable
solution is free of faults. In fact, these assumptions define
the “sandbox” model of reliability described in the next sec-
tion (4.2). Nevertheless, one might consider using statistical
analysis to improve fault tolerance, in combination with a
satisfactory fault model. We do not think this should be
applied näıvely to existing fault-intolerant solvers, for two
reasons. First, it may require running many solves to get
statistical confidence. Second, it would throw away what
numerical analysts have learned about how iterative solvers
respond to certain kinds of faults. For example, perturbing
the matrix A affects convergence of iterative solvers more
in earlier iterations than in later iterations (see Section 6).
Finally, we will show in this paper that iterative methods
can be modified to tolerate some soft faults, for much less
cost than running a fault-intolerant solver many times. We
do not dismiss statistical approaches completely, though. In
particular, they may be useful to enhance detection of faults
when invoking a solver. As we discuss in Section 6, our fault-
tolerant inner-outer iteration can save computation if it can
detect faults reliably in the inner solves.

4.2 Sandbox model
Relaxing reliability of all data and computations may result
in all manner of undesirable and unpredictable behavior.
If instructions, pointers, array indices, and boolean values
used for decisions may change arbitrarily at any time, we
cannot assert anything about the results of a computation
or the side effects of the program, even if it runs to com-
pletion without abnormal termination. The least we can do
is force the fault-susceptible program to execute in a sand-
box. This is a general idea from computer security, that
allows the execution of untrusted “guest” code in a partition
of the computer’s state (the “sandbox”) that protects the
rest of the computer (the “host”) from the guest’s possibly
bad behavior. Sandboxing can even protect the host against
malicious code that aims to corrupt the system’s state, so it



can certainly handle code subject to unintentional faults in
data and instructions.

Sandboxes ensure isolation of a possibly unreliable phase of
execution. They allow data to flow between reliable and un-
reliable phases of execution. Also, they let the host force
guest code to stop within a predefined finite time, or if the
host suspects the guest may have wandered astray. This
feature is especially important in distributed-memory com-
putation for preventing deadlock and other failures due to
“crashed” or unresponsive nodes. In general, sandboxing
converts some kinds of hard faults into soft faults, and lim-
its the scope of soft faults to the guest subprogram.

Sandboxing may be implemented in different ways. For ex-
ample, the guest may run in a virtual machine on the same
hardware as the host. (See Smith and Nair [29] or Rosen-
blum [23] for accessible overviews of past and recent virtual
machine technology.) Alternately, the guest may even run
on separate hardware from the host program. For example,
guests may run on a fast but unreliable subsystem, and the
controlling host program may run on a reliable but slower
subsystem.

Here is an example of the sandbox model in operation. In
this example, the guest program is responsible for computing
sparse matrix-vector products. It receives a vector x from
the host, computes y := A ·x (where A is the sparse matrix),
and returns y to the host. The vectors x and y on the host
are stored and computed with reliably. The guest makes no
promises about the correctness of the values in the vector y
it returns. It may even return different values for the same x
input each time it is invokes. However, the sandbox ensures
that the guest returns in finite time. (For example, it may
kill the guest process if it takes too long, and return some
arbitrary solution vector if the guest did not complete its
computation.)

The fault-tolerant inner-outer iteration we will describe in
Section 6 uses the sandbox model. There, the guest pro-
gram performs the task “Solve a given linear system.” The
host program invokes the guest repeatedly for different right-
hand sides, and the host performs its own calculations reli-
ably. See that section for details. Finer-grained models of
reliability may improve accuracy of the inner solves, so we
now go on to describe some desired features of these models.

4.3 Desired features of finer-grained models
The sandbox model of reliability makes only two promises
of the unreliable guest: it returns something (which may
not be correct), and it completes in fixed time. These al-
ready suffice to construct a working fault-tolerant iterative
method, as we will show in Section 6. However, detecting
faults or being able to limit how faults may occur would
also be useful. All of these are more sophisticated forms of
introspection. These finer-grained models of reliability can
be used to improve accuracy of the iterative method, or to
prove more specific promises about its convergence. We de-
scribe some of these below.

4.3.1 Detection
Knowing that no faults occurred in a bulk-reliability phase
of execution can avoid robustness and recovery effort in the

highly reliable phase. We discuss this more in Section 6
in the context of our inner-outer iteration. In general, if
we know that the potentially unreliable inner solver expe-
rienced no faults, we know that its computed intermedi-
ate state (e.g., the Krylov subspace basis) is correct. We
can then safely use that state to accelerate the next invo-
cation of the inner solver. Fault detection is therefore a
valuable feature of a reliability model, even without fault
recovery. Many error-correcting storage schemes, such as
those in DRAM memory, caches, and redundant disk stor-
age, can detect more kinds of errors than those which they
can correct. Extending those storage schemes to be able to
correct those additional detectable errors requires additional
hardware, energy consumption, and computation. Thus, if
algorithms can exploit fault detection to handle faults effi-
ciently, they can relieve hardware of the burden of recovery.

4.3.2 Transience
Faults should look as transient as possible. For example,
consider solving the sparse linear system Ax = b iteratively.
If faults in the entries of A persist throughout the iterative
method, the method will be solving the wrong linear sys-
tem Ãx = b. Worse yet, the algorithm will report that the
computed approximate solution x̃ has a small residual norm
‖b−Ãx̃‖, even though x̃ may be far from the actual solution.
In contrast, many iterative methods naturally tolerate some
kinds of occasional transient faults, so unreliable computa-
tions with only transient faults can still be useful. Indeed,
before reliable electronic computers, the only “computers”
were unreliable human beings. They could nevertheless solve
real-world problems, because human faults are usually tran-
sient. (This is why, when balancing a checkbook by hand,
it helps to repeat the process until one gets the same result
more than once.)

Many hardware faults are not transient. This is particu-
larly true of DRAM memory faults, as described for ex-
ample in Schroeder et al. [26]. Permanent faults (which
Schroeder et al. call “hard errors”) due to hardware failures
are much more common than temporary faults. The so-
called “chip-kill” DRAM error-correcting code (see Asanovic
et al. [1]) was designed for the common case of an entire
DRAM module failing permanently and producing incor-
rect values. In many cases, permanent faults interrupt a
running program or even make the node fail, and are thus
beyond the ability of an application to detect. That is,
they are “hard faults” (see Section 2). However, applications
may be able to detect and respond to these malfunctions as
they first begin. Furthermore, “temporary” single-bit faults
may persist and accumulate into multiple-bit faults, which
some error-correcting codes cannot correct. Eliminating cor-
rectible faults before they become uncorrectible requires spe-
cial measures (a “memory scrubber”) that may increase en-
ergy consumption and reduce available memory bandwidth.

This means the implementation of the reliability model likely
will have to do extra work to give the appearance of tran-
sience. In terms of Section 2, the implementation must turn
“persistent” faults into “sticky” or “transient” faults. For
example, unreliable memory storing the sparse matrix A
could be refreshed every few iterations from a reliable back-
ing store. Physical memory pages showing incorrect values
during the refresh may be retired and replaced with other



physical pages. The reliable backing store approach is also
useful for checkpointing, and could be implemented with fast
local storage (like flash memory).

4.3.3 Type system model
Consider implementing sparse matrix-vector multiply (the
example of Section 4.2) as the guest program in the unre-
liable sandbox. If the guest can be arbitrarily unreliable,
the sandbox has to do a lot of work to protect the host
from things like invalid instructions (due to errors in instruc-
tions) or out-of-bounds array accesses (due to errors in index
data). The sandbox could be much simpler if, for example,
only the entries of the sparse matrix and vectors, and the
floating-point computations with the matrix and vector val-
ues, are allowed to experience errors. This restriction would
also make it easier for programmers to reason about what
happens in code running inside the sandbox, so they would
not need to write many redundant-looking checks that make
code hard to read and maintain.

This example suggests a finer-grained programming model,
in which developers can decide which data and computa-
tions they want to be reliable or unreliable, and mix the two
in their program. For safety and ease of use, the default
behavior of all data and computations should be as close
to fail-stop reliability as possible. (That is, either the data
and computations are reliable, or the program terminates.)
Programmers may then relax reliability for certain data, or
certain phases of computation, or both.1 In the above ex-
ample, fail-stop default reliability ensures correctness of the
sparse matrix indices and the sparse matrix-vector multiply
routine, so the routine will not crash the entire program.
This programming model is more demanding than the sand-
box model, because it complicates the ways in which reliable
and unreliable computations and data may interact.

We are currently exploring a special case of this model,
in which programmers can allocate “unreliable memory” by
calling a special version of C’s malloc routine. The op-
erating system records and reports to the application any
detected but uncorrectible memory faults in memory areas
marked unreliable, but it does not kill the process that allo-
cated this memory, as many operating systems do for ordi-
nary memory allocations. We believe this programming in-
terface - based approach will work for special cases of faults.
However, we think the best way to generalize this reliability
model for all kinds of faults in different hardware compo-
nents would be to encode reliability in the type system of
the programming language, much as existing type systems
encode the precision of floating-point values or whether an
object should be protected from simultaneous access by mul-
tiple threads. We do not require new programming language
features for the numerical methods proposed in this paper,
but we think it would make designing and implementing
fault-tolerant algorithms much easier.

Encoding reliability in the type system is not a new idea.
Chen et al. [8] observe that different data in different algo-
rithms may need different levels of storage reliability, and

1Note that assuming a policy of default reliability and ex-
plicit unreliability does not contradict our characterization
of bulk vs. high reliability. It simply makes annotation eas-
ier.

that reliability costs energy, space, performance, or some
combination of them. They propose programmer annota-
tions for declaring reliability of subsets of multidimensional
arrays. For the simple case of nested for loops over the ar-
rays, they then use compiler analysis to derive what parts
of the arrays should be stored reliably. Our suggested “re-
liability on demand” feature is also a kind of programmer
annotation. However, it applies to entire data structures
and computations, rather than subsets of arrays. Chen et
al. require complicated compiler analysis of loops to derive
the reliable regions of arrays and generate separate reliable
and unreliable code. Our annotations would depend only on
simple type declarations and compiler analysis, analogous to
that already performed by compilers when combining values
of different floating-point precisions.

4.3.4 Reliable parallel decisions
Parallel computing introduces new ways in which soft faults
can turn into hard faults. For example, if the contents of
messages between nodes of a distributed-memory computer
may become corrupted, then different nodes may get differ-
ent results in an all-reduce, even if each node computes its
part of the all-reduce reliably. Many distributed-memory
implementations of iterative methods use the result of an
all-reduce in a predicate that tells the method when to stop
iterating (for example, when the residual norm is less than
some tolerance). The predicate is computed redundantly on
each node, with the expectation that all nodes will get the
same result. If they do not – for example, if they have differ-
ent values for the residual norm – then some nodes may stop
iterating while others continue. This can result in deadlock
or application failure, that is, it can turn a soft fault into a
hard fault. We would prefer that parallel decisions like this
one be reliable.

This is not a new problem; Blackford et al. [4] discuss it
in the less extreme context of heterogeneous clusters, where
different processors may have different floating-point prop-
erties and thus may evaluate floating-point comparisons dif-
ferently. They recommend in this case that one processor
compute the stopping criterion and broadcast the Boolean
result to all other processors. This would only solve the
reliability problem for convergence tests if Boolean-valued
messages cannot be corrupted or lost. In our case, it would
be simpler, and probably no more costly, to require the origi-
nal all-reduce and the predicate evaluation to be reliable and
produce the same result on all nodes.

A different approach would be to observe that the stop-
ping criterion is a special case of distributed agreement on a
Boolean value. This is an instance of the thoroughly stud-
ied Byzantine Generals Problem (Lamport et al. [17]), for
which practical solution algorithms exist (see e.g., Castro
and Liskov [7]). A straight-forward example of this approach
is to augment the all-reduce data for the convergence test
with a simple integer variable where each processor would
set its value to one if it has reached convergence. Then all
processors would declare convergence if a the sum of these
integer values was greater than some portion of the total
processors being used. Alternately, it may be simpler just
to assume high reliability for all distributed-memory trans-
actions. For example, practically speaking, the cost of an
all-reduce is dominated by latency (or even just the fact that



the message is transmitted off the node), so adding reliabil-
ity by computing redundantly or adding error detection and
correction metadata to the all-reduce data package is almost
free.

5. DESIRED PROPERTIES OF FAULT-
TOLERANT ITERATIVE METHODS

Fault-tolerant iterative methods should have certain prop-
erties in order to be both useful and feasible to implement.
In this section, we describe a few desired properties, and
explain which make sense to implement. Section 5.1 intro-
duces two desired convergence properties – eventual conver-
gence and gradual degradation of convergence – and argues
for eventual convergence as the most reasonable criterion.
Section 5.2 discusses properties of implementations of these
methods that will help them achieve good performance, with
minimal changes to existing solver algorithms and imple-
mentations. These criteria will help us narrow the space of
possible algorithms.

5.1 Convergence-related properties
We call what we see as the most important property eventual
convergence: If a comparable but not fault-tolerant method
would converge to the right answer in the case of no faults,
the fault-tolerant solver should either converge to the right
answer in a finite number of steps, or tell the caller that it
did not. The fault-tolerant method may require more iter-
ations or otherwise take more time, and it might also have
an upper bound on the number of faults it can tolerate.
One iterative method that does not have the eventual con-
vergence property is iterative refinement (an algorithm first
described by Wilkinson [33]). Given sufficiently large faults,
only one fault in the residual vector need happen at the
“last iteration” for iterative refinement never to compute the
right answer. Without eventual convergence, it would not
be worthwhile to relax hardware reliability, since all the ef-
fort at previous iterations might be wasted by a single fault.
It is often impossible to know when an fault will occur in
a particular component, so a reasonable method should al-
low them to occur at any time. The Fault-Tolerant GMRES
we present in Section 6 does have the eventual convergence
property.

Gradual degradation of convergence as the number of faults
increases would also be desirable. This might be much harder
to guarantee than eventual convergence. For example, con-
sider an explicit Petrov-Galerkin projection method for solv-
ing the n × n system Ax = b, that adds basis vectors to
two different bases Vk = [v1, . . . , vk] and Wk = [w1, . . . , wk].
Implementing a method mathematically equivalent to GM-
RES, for instance, would require R (Vk) = span{r0, Ar0, . . . ,
Ak−1 r0} and R (Wk) = AR (Vk). If the matrix-vector prod-
ucts were unreliable, we could still extend the basis in every
iteration by adding a random basis vector and orthogonaliz-
ing it against the previous basis vectors, if the basis vectors
are computed reliably. In the worst case, this unreliable
method would not converge until R (Wk) spans the entire
space, that is, on iteration n − 1. In fact, GMRES cannot
promise better than this even in the case of no faults. It is
possible to construct n× n problems for which the residual
in ordinary GMRES does not decrease until iteration n− 1,
or for which the residual exhibits any desired nonincreasing

convergence curve [12]. Some real-life linear systems exhibit
almost no convergence until some number of iterations, af-
ter which they converge rapidly. This suggests that eventual
convergence is a more reasonable goal than gradual degra-
dation of convergence. We will show in Section 7 that our
FT-GMRES algorithm exhibits gradual degradation of con-
vergence in practice. It may do so in theory also, though we
do not attempt in this paper to prove this.

5.2 Implementation-related properties
We have already discussed different models of application-
controlled reliability in Section 4. Making all data and arith-
metic reliable would trivially result in a fault-tolerant iter-
ative method. However, all of our models assume that reli-
ability has a cost, which is some combination of additional
energy or storage and reduced performance. Thus, a fault-
tolerant algorithm should aim to store most of its data and
spend most of its computations in unreliable mode. Second,
fault-tolerant algorithms should not be too much slower than
corresponding less tolerant algorithms. It is reasonable to
expect that the longer an application runs, the more faults it
will likely encounter. More faults mean either slower conver-
gence, which compounds the problem, or even solver failure.
If the fault-tolerant method is too slow, it may be faster just
to run a less tolerant method over and over using an ensem-
ble approach until the majority of answers agree. Finally,
fault-tolerant methods should reuse existing algorithms and
implementations as much as possible. In particular, they
should accept existing preconditioner algorithms, and ide-
ally even existing implementations. Preconditioners are of-
ten complicated and specific to their application. Our inner-
outer iteration in Section 6 can call existing iterative solvers
and their preconditioners as a “black box,” as long as they
promise to terminate within a fixed time.2

6. FAULT-TOLERANT GMRES
In this section, we present an inner-outer iteration approach
we call Fault-Tolerant GMRES (FT-GMRES). FT-GMRES
promises “eventual convergence” as described in Section 5.1:
it either converges to the correct answer, or tells you when
it cannot. It requires only the sandbox model of reliability
described in Section 4.2, though inner solves may take ad-
vantage of finer-grained reliability models to improve conver-
gence. We begin in Section 6.1 by summarizing the Flexible
GMRES (FGMRES) algorithm, which inspired FT-GMRES.
Section 6.2 presents FT-GMRES in detail. Section 6.3 shows
how one might use inexact Krylov methods as a tool for un-
derstanding FT-GMRES’ convergence, and perhaps also for
controlling where to apply reliability. The following Section
7 shows numerical experiments comparing FT-GMRES with
standard and restarted GMRES.

6.1 Flexible GMRES
The Flexible GMRES (FGMRES) algorithm of Saad [24],
shown as Algorithm 1, extends the Generalized Minimal
Residual (GMRES) method of Saad and Schultz [25]. “Flex-
ible” variants of iterative methods allow the preconditioner

2Guaranteeing fixed-time termination when distributed-
memory messages may be unreliable may require some mod-
ifications to existing sparse matrix-vector multiply and pre-
conditioner implementations, but not to the mathematical
algorithms.



to change in every iteration. There are flexible versions of
other iterative methods besides GMRES, such as CG [11]
and QMR [31]. One motivation behind flexible methods was
“inner-outer iterations,” that is, using an iterative method
itself as the preconditioner. In this case, “solve qj := Mjzj”
means “solve the linear system Azj = qj approximately us-
ing a given iterative method, with a given stopping crite-
rion.” This “inner” solve step preconditions the “outer” flex-
ible iteration (in this case FGMRES). Changing right-hand
sides and stopping criteria mean that if one could express the
inner solve as a matrix, it would be different on each invo-
cation. Flexible methods need not use an iterative method
for the inner solves. The Mj may be arbitrary functions
from the range of A to the domain of A. Furthermore, the
preconditioners may change significantly from one iteration
to another; flexible methods do not depend on the difference
between successive preconditioners being small.

Algorithm 1 Flexible GMRES (FGMRES)

Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0
1: r0 := b−Ax0, β := ‖r0‖2, q1 := r0/β
2: for j = 1, 2, . . . until convergence do
3: Solve qj = Mjzj . Apply preconditioner
4: vj+1 := Azj
5: for i = 1, 2, . . . , k do . Orthogonalize vj+1

6: H(i, j) := q∗i vj+1

7: vj+1 := vj+1 − qiH(i, j)
8: end for
9: H(j + 1, j) := ‖vj+1‖2

10: Update rank-revealing decomposition of H(1:j, 1:j)
11: if H(j + 1, j) is less than some tolerance then
12: if H(1:j, 1:j) not full rank then
13: Did not converged; report error
14: else
15: Converged; return after end of this iteration
16: end if
17: else
18: qj+1 := vj+1/H(j + 1, j)
19: end if
20: yj := argminy ‖H(1:j + 1, 1:j)y − βe1‖2
21: xj := x0 + [z1, z2, . . . , zj ]yj
22: end for

In exact arithmetic, FGMRES’ only additional failure mode
beyond those of standard right-preconditioned GMRES, is
that H(j + 1, j) = 0 does not necessarily indicate conver-
gence. This is because H(1:j, 1:j) is always nonsingular
in GMRES if j is the smallest iteration index for which
H(j + 1, j) = 0, whereas H(1:j, 1:j) may not be nonsin-
gular in FGMRES in that case. (This is Saad’s Proposition
2.2 [24].) This can occur via unlucky choices of the pre-
conditioners: for example, M−1

j = A and M−1
j+1 = A−1.

In practice, this case is rare. Furthermore, there are algo-
rithms for updating a rank-revealing decomposition of an
m×m matrix in O(m2) time (see e.g., Stewart [30]), which
is no more time than it takes to update the QR factoriza-
tion of the upper Hessenberg matrix at iteration m. Thus,
detecting rank deficiency is not a great burden. We will do
so in Fault-Tolerant GMRES, discussed below.

Flexible inner-outer iterations have the property that the
dimension of the Krylov subspace from which they choose

the current approximate solution grows at each outer itera-
tion [27]. This ensures eventual convergence. Corresponding
restarted Krylov methods lack this property; their conver-
gence may stagnate. Even though this property of inner-
outer iterations may not hold in the case of faulty inner
solves, our experiments in Section 7 show that inner-outer
iterations offer better fault tolerance than simply restarting.
Both restarting and inner-outer iterations correspond natu-
rally to the sandbox reliability model when the number of
iterations per restart cycle resp. inner solve is fixed.

6.2 Fault-Tolerant GMRES
FGMRES’ acceptance of significantly different precondition-
ers at each iteration suggests modeling solver faults as “dif-
ferent preconditioners.” The least disruptive approach for
existing solvers is to use the inner-outer iteration approach.
The outer FGMRES iteration wraps any existing solver,
which is used as the inner iteration. Any solver works, even
a sparse direct method (in which case the inner “iteration”
is not actually an iterative method), or an iterative method
with any or no preconditioner. Existing preconditioners may
also be used without algorithmic modifications. We call
the resulting inner-outer iteration Fault-Tolerant GMRES.
It is shown here as Algorithm 2. Inner-outer iterations with
FGMRES have been used as a kind of iterative refinement
in mixed-precision computation (see Buttari et al. [6]), but
as far as we know, this is the first time it has been used for
reliability and robustness against possibly unbounded errors.

Algorithm 2 Fault-Tolerant GMRES (FT-GMRES)

Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0
1: r0 := b−Ax0, β := ‖r0‖2, q1 := r0/β
2: for j = 1, 2, . . . until convergence do
3: Inner solve (unreliable) for zj in qj = Azj
4: vj+1 := Azj
5: for i = 1, 2, . . . , k do . Orthogonalize vj+1

6: H(i, j) := q∗i vj+1

7: vj+1 := vj+1 − qiH(i, j)
8: end for
9: H(j + 1, j) := ‖vj+1‖2

10: Update rank-revealing decomposition of H(1:j, 1:j)
11: if H(j + 1, j) is less than some tolerance then
12: if H(1:j, 1:j) not full rank then
13: Try recovery strategies discussed in text
14: else
15: Converged; return after end of this iteration
16: end if
17: else
18: qj+1 := vj+1/H(j + 1, j)
19: end if
20: yj := argminy ‖H(1:j + 1, 1:j)y − βe1‖2
21: xj := x0 + [z1, z2, . . . , zj ]yj
22: end for

The only part of FT-GMRES allowed to run unreliably is
Line 3, which invokes the inner solver. Everything else in the
algorithm must run reliably. Inner solvers need only return
with a solution in finite time (see Section 4.2). That solution
may be completely wrong if errors occurrred. As a result, the
outer iteration should scan that solution vector for invalid
values (NaN and Inf), and replace them with valid values
(which do not have to be correct – for example, averages



of neighbors). Many iterative methods perform this scan
already for incomplete factorization preconditioning, since
there often is no way to know in advance that the incomplete
factors are nonsingular.

Line 13 of Algorithm 2 covers the case where the outer it-
eration appears to have converged, but the current upper
Hessenberg matrix is rank deficient. This can happen in
FGMRES as well, even with no faults. There, it indicates an
unlucky combination of preconditioner applications. In the
case of FT-GMRES, that unlucky combination may have oc-
curred due to faults. One of the following recovery strategies
may be appropriate: (a) retry the current iteration starting
from Line 3 inclusive; (b) retry the current iteration after
Line 3, but replace zj with a random vector (scaled appro-
priately according to best estimates of ‖A−1‖); or (c) give up
and return xj−1 as the best possible approximate solution.
In parallel, all these strategies require agreement between
processors, and therefore global communication. However,
the processors have to agree anyway whether to continue it-
erating based on the convergence criterion, so no additional
communication is needed. In our numerical experiments dis-
cussed in Section 7, we found the rank-deficient upper Hes-
senberg case to be rare.

Another feature of the inner-outer iteration approach is that
we can reuse information from previous inner iterations, if
we know somehow that they were error-free. For exam-
ple, we could use a Krylov basis recycling technique and
restart, or simply keep the previous iteration’s data and
continue without restarting (for an (F)GMRES inner itera-
tion). Thus, the implementation can use whatever informa-
tion about errors is available, though it does not require this
information.

6.3 Inexact Krylov as an analysis tool
Inexact Krylov methods allow solving Ax = b by using suc-
cessive approximations Ak of A. This makes them a gener-
alization of flexible methods, since the matrix, as well as the
preconditioner, may change in every iteration. For overviews
and development of convergence theory, see Simonici and
Szyld [28] and van den Eshof and Sleijpen [32]. Conver-
gence comes by constraining the error between the actual
matrix A and each the approximation Ak. The error must
start small, but is allowed to grow inversely with the cur-
rent residual norm. Inexact Krylov methods are motivated
by applications where computing A itself is prohibitively ex-
pensive, but computing w = Av for a vector v can be done
approximately, and more effort in the approximation results
in less error.

Inexact Krylov methods cannot be used to provide toler-
ance against arbitrary data and computational faults when
applying the matrix A. This is because they require an er-
ror bound which is usually not as large as many possible bit
flips. (Bit flips may occur in exponent bits as well as sign
and significand bits.) Furthermore, if a fault in applying A
results in an error which is larger than the current bound,
inexact Krylov methods cannot promise convergence. Nev-
ertheless, inexact Krylov offers a framework for analyzing
FGMRES convergence. If a reliability model lets us control
and bound inner solves’ errors, we can use this framework.

Inexact Krylov methods also give insight into where to fo-
cus reliability efforts. For example, convergence of inexact
GMRES depends more on orthogonality of the basis vectors
than convergence of standard GMRES [28]. This suggests
spending more effort on basis vector reliability than on reli-
ability of the matrix and preconditioner.

7. NUMERICAL EXPERIMENTS
We prototyped solvers and a fault injection framework in
MATLAB R©3 We used these to compare the convergence of
FT-GMRES, restarted GMRES, and nonrestarted GMRES,
for various fault rates in the inner solves’ sparse matrix-
vector multiplies (SpMVs). (Our FT-GMRES used unrestarted
GMRES as the inner solve.) We found that FT-GMRES
can often converge even when the majority of the inner
solves’ SpMVs suffer faults. The other methods tested either
did not converge, or converged much more slowly than FT-
GMRES, when some of their SpMVs were faulty. Further-
more, FT-GMRES’ convergence shows the desired gradual
degradation behavior as the fault rate increases. Section 7.1
describes our framework for numerical experiments, and the
test problems and actual experiments we tried. We present
results in Section 7.2.

7.1 Experimental framework
Our MATLAB prototype can inject faults either in the re-
sult of an SpMV, or an entire inner solve (for FT-GMRES).
It decides deterministically whether to inject a fault, by us-
ing a repeating infinite sequence of Boolean values that we
specify. Each “possibly faulty” operation reads the current
Boolean value from the sequence, and if it is true, we add
1 to the first entry of the result of the operation (imitating
[14]). For example, when running FT-GMRES with faulty
SpMV operations, if the sequence is 0, 0, 1, then every third
SpMV operation in the inner solve is faulty. Deterministic
faults make it easy to reproduce experimental results. They
also let us control which SpMV operations fail. (This is im-
portant because the theory of inexact Krylov methods (see
Section 6.3) suggests that inaccurate matrix-vector products
or preconditioner applications in the first few iterations mat-
ter more than in later iterations. We plan to explore this
more in future work.)

Our MATLAB versions of GMRES and FT-GMRES do ex-
tra work for robustness. After invoking a possibly unreliable
operation (either an SpMV or an inner solve), they scan the
output vector for invalid floating-point values (Inf or NaN),
and replace those with random data. Also, after orthog-
onalization, they check whether the norm of the resulting
orthogonalized vector is an invalid floating-point value. If it
is, they replace it with random data and reorthogonalize.4

Finally, we found that FT-GMRES converges faster if the
first inner solve is successful. We implemented extra relia-
bility for the first inner solve in a realistic way as follows. If
the first inner solve did not reduce the residual norm at all,
we try it once more. If that still did not reduce the resid-
ual norm, we replace the result of the first inner solve with

3MATLAB is a registered trademark of The MathWorks,
Inc. We used MATLAB version 7.6.0.324 (R2008a).
4Randomization improves robustness in practice, but makes
reproducing experiments more difficult. We used MAT-
LAB’s default Mersenne Twister pseudorandom number
generator, with the default seed.



Name # rows # nz κ(A)
Diagonal 10,000 10,000 1.00e+10

Szczerba/ 20,896 191,368 4.85e+09

Ill Stokes
Sandia/ 25,187 193,216 1.99e+14

mult dcop 03

Table 1: Test problems for FT-GMRES numerical
experiments. The “name” (except for “Diagonal”)
comes from the University of Florida Sparse Matrix
Collection. “# rows” gives the number of rows (and
columns) in the matrix, “# nz” the number of stored
sparse matrix entries, and“κ(A)”an (estimate of, via
MATLAB’s condest) the matrix’s condition number
to 3 significant figures.

the identity operator and continue. We include this only
for the first outer iteration of FT-GMRES. In practice, our
experiments rarely needed to retry the first inner solve.

We performed three sets of numerical experiments. First,
for a given linear system and fault sequence, we compared
the convergence of (a) FT-GMRES, with s − k + 1 itera-
tions per inner solve at outer iteration k, for a total of t
outer iterations (k = 1, . . . , t); (b) restarted GMRES, with
s iterations per restart cycle and t restart cycles; and (c)
GMRES without restarting, s · t iterations. Decreasing the
number of iterations per inner solve in FT-GMRES makes
comparing an inner-outer iteration and a restarted method
fair, by ensuring that both methods store the same number
of left Krylov basis vectors [24]. We include nonrestarted
GMRES just to show its lack of robustness in the presence
of faults. For this set, we fixed s = 50, to simulate the
fixed-time requirement for inner solves. We set t = 10 so
that s · t nonrestarted GMRES iterations would complete
in a reasonable time. Second, we tested only FT-GMRES
with the same linear system, but with different fault rates.
This set will show the desired gradual degradation of FT-
GMRES’s convergence with respect to the fault rate. Here,
we set s− k+ 1 iterations per inner solve with s = 50 as be-
fore, but performed more outer iterations (t = 20), since we
did not have to run s · t iterations of nonrestarted GMRES.
In the third set, we tested FT-GMRES for many outer iter-
ations t = 300 and a fixed number s = 50 of iterations per
inner solve, and varied the outer solves’ convergence toler-
ance and the fault rate. This will show that computational
cost does not increase much as the fault rate increases.

We tested three types of matrices in our experiments: diag-
onal with positive entries with base-10 logarithmic spacing
from 1 to 10−10, nonsymmetric matrices from discretizations
of partial differential equations (PDEs), and nonsymmetric
circuit simulation matrices. Our matrices from the latter
two categories come from the University of Florida Sparse
Matrix Collection (UFSMC) [10]. Table 1 names and de-
scribes the test problems. “Diagonal” is a diagonal matrix,
Ill Stokes comes from a discretization of Stokes’ equation,
and mult dcop 03 comes from a circuit simulation. Each
UFSMC matrix includes a sample right-hand side from its
application. For “Diagonal,” we chose the exact solution x
as a vector of ones, and computed the right-hand side b via
b = A · x.
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Figure 2: FT-GMRES vs. GMRES on Diagonal.
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Figure 3: FT-GMRES vs. GMRES on Ill Stokes.

7.2 Results
Figures 2, 3, and 4 compare FT-GMRES (50 iterations per
inner solve, 10 inner solves) with restarted GMRES (50 iter-
ations per restart cycle, 10 restart cycles) and nonrestarted
GMRES (500 = 50 · 10 iterations). Every first and third
out of 10 SpMVs in GMRES, and in FT-GMRES’ inner
solves, are faulty. In all cases, FT-GMRES converges faster
than the other two methods, and faults cause restarted GM-
RES to stagnate or converge more slowly than FT-GMRES.
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Figure 4: FT-GMRES vs. GMRES on mult dcop 03.
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Figure 5: FT-GMRES on Diagonal problem, with
different fault rates in inner solves’ SpMVs.
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Figure 6: FT-GMRES on Ill Stokes problem, with
different fault rates in inner solves’ SpMVs.

Nonrestarted GMRES’ residual norm often fails to be mono-
tonic. Figures 5, 6, and 7 show only FT-GMRES (50 iter-
ations per inner solve, 20 inner solves), with different fault
rates for SpMV operations in the inner solves: no faults, 1
out of 10, 3 out of 10, and 5 out of 10 SpMVs faulty.5 We
found that increasing the fault rate only decreases the FT-
GMRES convergence rate gradually. Finally, Figure 8 shows
that, barring one outlier, the number of outer iterations to
attain a given convergence rate increases little as the fault
rate increases.

8. CONCLUSIONS AND FUTURE WORK
The above section shows that FT-GMRES tolerates faults
much better than standard GMRES. This holds even if we
add robustness features to standard GMRES, and even if
GMRES periodically restarts to throw away “bad” basis vec-
tors. Our experiments also show that FT-GMRES’ conver-
gence rate degrades gradually as the fault rate is increased,
and that increasing the fault rate only modestly increases
the total number of iterations (and therefore the total cost).
While more experiments are needed, we think FT-GMRES
and fault-tolerant iterative methods in general have great

5In the 1 out of 10 case, only the tenth of every ten is faulty.
The 3 out of 10 case uses the pattern 0, 0, 0, 0, 1, 0, 0, 1, 0,
1, and the 5 out of 10 case 1, 0, 1, 0, 1, 0, 0, 1, 0, 1.
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Figure 7: FT-GMRES on mult dcop 03 problem,
with different fault rates in inner solves’ SpMVs.
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Figure 8: Number of outer iterations to convergence
for FT-GMRES (50 iterations per inner solve, max
300 outer iterations) on mult dcop 03 problem, vs.
fault rate in the inner solves’ SpMVs, and the outer
solves’ convergence tolerance.

potential to improve solver robustness and relax hardware
reliability constraints. The basic approaches we have used
can be applied to many algorithms, greatly reducing the im-
pact of the soft faults that are expected on future computing
systems.

Our work has also opened up interesting collaborations with
systems researchers, to develop programming interfaces for
varying reliability, reporting faults, and selective checkpoint-
ing. These collaborations have the potential to influence
hardware-software codesign, especially at extreme scales,
where energy requirements will force system designers to
reduce hardware reliability and rely more on software ap-
proaches. Fault-tolerant algorithms thus have the potential
to influence computer hardware in a way analogous to RISC
(Reduced Instruction Set Computer) architectures [22], by
encouraging beneficial trade-offs between hardware and soft-
ware.
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